

Industrial Challenges and Opportunities

Chemtech Synergy 2024

Antwerp, November 6th, 2024

CONFIDENTIAL AND PROPRIETARY Any use of this material without specific permission is strictly prohibited

Europe's chemical industry has done well in the past despite disadvantages

- Europe - North America Asia

Chemicals total return to shareholders (TRS) USD (index Jan 2000 = 100)

However, the industry is now at a point of "poly-crisis" and inflection

Demand

-10-25%

Drop in demand in many chains 2019-24

Energy prices

 $\mathbf{2}\mathbf{X}$

Structural increase in natural gas and electricity prices

Overcapacity

EU capacity utilisation in many chains to 2030

Industrial production

5-20%

Fall industrial activity in key sectors

CO2 prices

3X

Energy prices rising further with CO2 accounted for

Trade

90%

China self-sufficiency in major chemicals

As a result, half of the value pool in Europe has eroded

Volume-based

Value-based

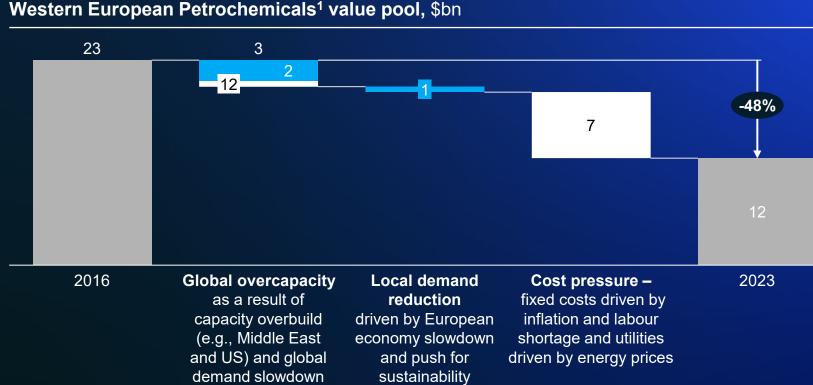
x Deep dive to follow

Global overcapacity has intensified competition, leading to both volume and value erosion in Europe

This was coupled with **utilities** and fixed costs growth (e.g. ~60 USD/t for ethylene, ~220 USD/t for MDI, 600 USD/t for PC), which made European producers costdisadvantaged compared to global peers

For a subset of chemicals (Ethylene, PE, PP), global overcapacity is a more significant factor (60% value erosion) and cost pressure is lower

McKinsev & Company

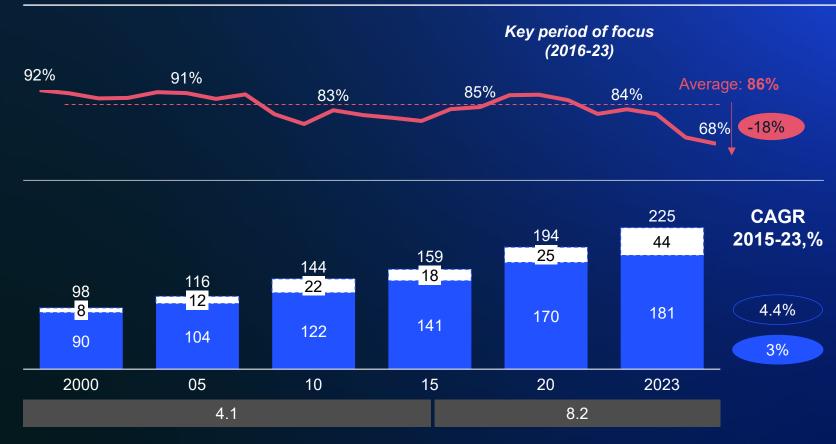

23 3 12 7

16 - 2023)

36 products across C2,C3,C4 and BTX value chains

2. Includes price spread decline - delta between selling price and the cost of feedstock (including by-product credits)

demand slowdowr	sustainability
Value	erosion factors (201

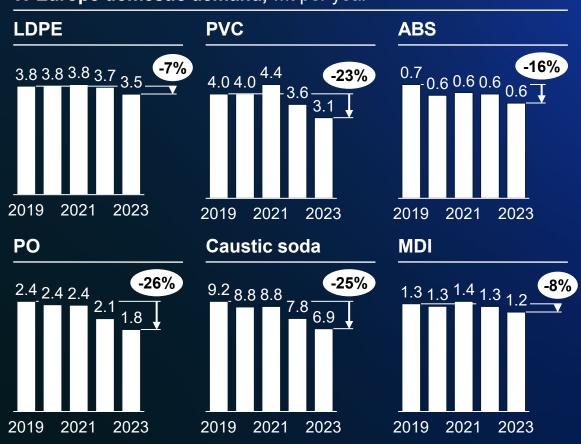

Global overcapacity: Rapid capacity additions and sluggish demand growth reduced WE utilization to historic low (since 2000) of 68%

Non exhaustive

xx Average capacity addition p.a. (MTA)

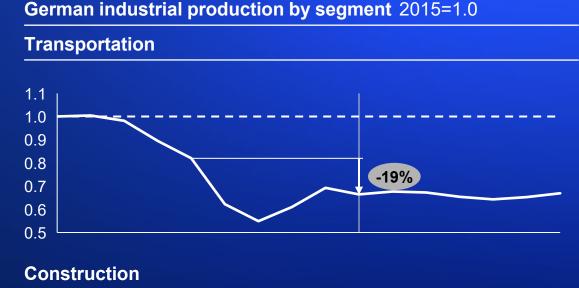
Global demand Global excess capacity - WE utilization

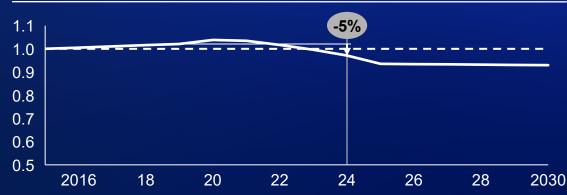
Global ethylene supply/demand and European operating rate, MTA


- Capacity additions, particularly from ME and the USA, e.g. HDPE and LLDPE capacity increased by 36MTA between 2016-23 despite only 20MTA additional global demand
- Slowdown in global ethylene demand growth, with Europe more effected than other geographies, decreasing from 0% p.a. from 2000-16 to -2.4% p.a. from 2016-23

In 2010-20 global excess capacity was equal to 25-30 crackers¹ – growing to ~55 extra crackers in 2023

Assuming ~800kt average cracker size


Local demand: Decline in European chemicals demand and in underlying industry

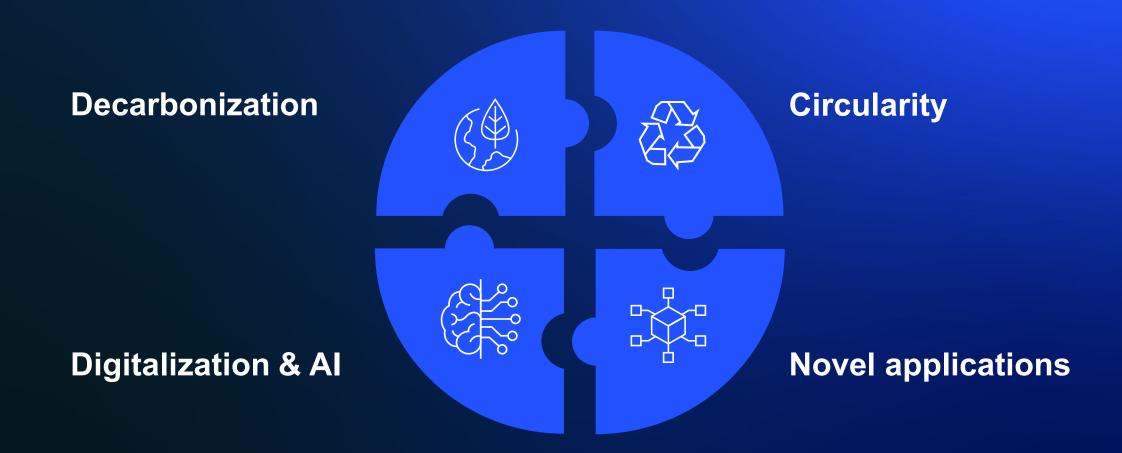

xx Delta 2019-'24

W Europe domestic demand, Mt per year

1. Questionnaires sent to a panel of around 150 construction companies Note: Forecast based on McKinsey's fading momentum scenario

Source: IHS Markit, OPIS CMA

Utility costs: EU energy prices reaching new 2x highs, going to 3x with CO₂


Cost of natural gas rising sharply

Natural gas prices and CO₂ cost of natural gas, €/MWh

Expected price range Reported - Reported price TTF Gas futures NG + CO2 price 180 200 HH Ť 754 2023 H2 forecasts 100 150 EUR/MWh 2024 H1 forecasts 90 By 2035 Incl CO2 2023 H1 forecasts 80 **50**-120 2022 forecasts 70 EUR/MWh By 2030 Incl CO2 60 90 2021 forecasts 50 20 40 EUR/MWh 60 Historical 30 average 30 - 4020 30 2018-2020 EUR/MWh forecasts 10 New equilibrium Ω 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 2035 20 25 30 2035 2017 2015

EU carbon price and forecasts continue to rise EUR per t CO₂

Against this backdrop, European players can utilize innovation to turn back to value creation with focused activities

Thank you

